Classification of Arabic Tweets: A Review

نویسندگان

چکیده

Text classification is a prominent research area, gaining more interest in academia, industry and social media. Arabic one of the world’s most famous languages it had significant role science, mathematics philosophy Europe middle ages. During Arab Spring, media, that is, Facebook, Twitter Instagram, played an essential establishing, running, spreading these movements. Sentiment Analysis (ASA) Classification (ATC) for media tools are hot topics, aiming to obtain valuable text insights. Although some surveys available on this topic, studies Tweets need be classified basis machine learning algorithms. Machine algorithms lexicon-based classifications considered processing. In paper, comparison previous presented, elaborating comprehensive study Tweets. Research according algorithms, supervised learning, unsupervised hybrid, classifications, their advantages/disadvantages discussed comprehensively. We pose different challenges future directions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sentiment Classification of Arabic Tweets: A Supervised Approach

Social media platforms have proven to be a powerful source of opinion sharing. Thus, mining and analyzing these opinions has an important role in decision-making and product benchmarking. However, the manual processing of the huge amount of content that these web-based applications host is an arduous task. This has led to the emergence of a new field of research known as Sentiment Analysis. In ...

متن کامل

POS Tagging for Arabic Tweets

Part-of-Speech (POS) tagging is a key step in many NLP algorithms. However, tweets are difficult to POS tag because there are many phenomena that frequently appear in Twitter that are not as common, or are entirely absent, in other domains: tweets are short, are not always written maintaining formal grammar and proper spelling, and abbreviations are often used to overcome their restricted lengt...

متن کامل

Unsupervised Stemmer for Arabic Tweets

Stemming is an essential processing step in a wide range of high level text processing applications such as information extraction, machine translation and sentiment analysis. It is used to reduce words to their stems. Many stemming algorithms have been developed for Modern Standard Arabic (MSA). Although Arabic tweets and MSA are closely related and share many characteristics, there are substa...

متن کامل

Universal Dependencies for Arabic Tweets

To facilitate cross-lingual studies, there is an increasing interest in identifying linguistic universals. Recently, a new universal scheme was designed as a part of universal dependency project. In this paper, we map the Arabic tweets dependency treebank (ATDT) to the Universal Dependency (UD) scheme to compare it to other language resources and for the purpose of cross-lingual studies.

متن کامل

ASTD: Arabic Sentiment Tweets Dataset

This paper introduces ASTD, an Arabic social sentiment analysis dataset gathered from Twitter. It consists of about 10,000 tweets which are classified as objective, subjective positive, subjective negative, and subjective mixed. We present the properties and the statistics of the dataset, and run experiments using standard partitioning of the dataset. Our experiments provide benchmark results f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2021

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics10101143